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and Jacques Renaud2
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2 Université Paris-Est, Laboratoire APC, UMR CNRS 7164, 10, rue A. Domon et L. Duquet,
75205 Paris Cedex 13, France

E-mail: gazeau@apc.univ-paris7.fr, huguet@apc.univ-paris7.fr, marclr@cea.fr and
jacques.renaud@univ-mlv.fr

Received 3 May 2007, in final form 2 July 2007
Published 1 August 2007
Online at stacks.iop.org/JPhysA/40/10225

Abstract
The existence of a family of coherent states (CS) solving the identity in a
Hilbert space allows, under certain conditions, to quantize functions defined
on the measure space of CS parameters. The application of this procedure to
the 2-sphere provides a family of inequivalent CS quantizations based on the
spin spherical harmonics (the CS quantization from usual spherical harmonics
appears to give a trivial issue for the Cartesian coordinates). We compare these
CS quantizations to the usual (Madore) construction of the fuzzy sphere. Due to
these differences, our procedure yields new types of fuzzy spheres. Moreover,
the general applicability of CS quantization suggests similar constructions of
fuzzy versions of a large variety of sets.

PACS numbers: 03.65.Ca, 03.65.Fd, 04.60.Pp, 02.40.Gh

1. Some ideas on quantization

A classical description of a set of data, say X, is usually carried out by considering sets of real or
complex functions on X. Depending on the context (data handling, signal analysis, mechanics,
etc) the set X will be equipped with a definite structure (topological space, measure space,
symplectic manifold, etc) and the set of functions on X which will be considered as classical
observables must be restricted with regard to the structure on X; for instance, functions viewed
as signals should be square integrable with respect to the measure assigned to the set X.

How to provide instead a ‘quantum description’ of the same set X ? As a first characteristic,
the latter replaces—this is a definition—the classical observables by quantum observables,
which do not commute in general. As usual, these quantum observables will be realized as
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operators acting on some Hilbert space H, whose projective version will be considered as the
set of quantum states. This Hilbert space will be constructed as a subset in the set of functions
on X.

The advantage of the coherent states (CS) quantization procedure, in a standard sense
(Klauder 1963a, 1963b, Klauder 1995, Berezin 1975) as in recent generalizations (Gazeau
et al 2003) and applications (Gazeau and Piechocki 2004), is that it requires a minimal
significant structure on X, namely the only existence of a measure µ(dx), together with a σ -
algebra of measurable subsets. As a measure space, X will be given the name of an observation
set in the present context, and the existence of a measure provides us with a statistical reading of
the set of measurable real- or complex-valued functions on X: computing, for instance, average
values on subsets with bounded measure. The quantum states will correspond to measurable
and square integrable functions on the set X, but not all square integrable functions are eligible
as quantum states. The construction of the Hilbert space H is equivalent to the choice of
a class of eligible quantum states, together with a technical condition of continuity. This
provides a correspondence between classical and quantum observables by defining a suitable
generalization of the standard coherent states.

Generally speaking, a quantization is a procedure which associates with an algebra A

of classical observables an algebra A of quantum observables. The algebra A is usually
realized as a commutative Poisson algebra of derivable functions on a symplectic (phase)
space. The algebra A is, however, non-commutative and the quantization procedure must
provide a correspondence A �→ A : f �→ F . Various procedures of quantization exist, which
require some of the following conditions.

• With the constant function 1 is associated the unity of A.
• The commutation relations of A reproduce the Poisson relations of A. Moreover, they

offer a realization of the Heisenberg algebra.
• A is realized as an algebra of operators acting on some Hilbert space.

Most physical quantum theories may be obtained as the result of a canonical quantization
procedure. However, the prescriptions for the latter appear quite arbitrary. Moreover, it is
difficult, if not impossible, to implement it covariantly. It is thus difficult to generalize this
procedure to many systems. Geometric quantization fully exploits the symplectic structure
of the phase space, but generally requires more structure, like a symplectic potential, e.g.,
the Legendre form on the cotangent bundle of a configuration space. In this regard, the
deformation quantization appears more general in the sense that it is based on the symplectic
structure only and it preserves symmetries (symplectomorphisms).

The coherent state quantization (CSQ) presented here appears more general since it does
not even require a symplectic or Poisson structure. The only structure that a space X must
possess is a measure. This procedure can be considered from different viewpoints, which are
as follows.

• It is mostly genuine in the sense that it verifies all the requirements above, including
those relative to the Poisson structure when the later is present. It however appears more
general.

• The coherent state quantization may also be seen as a ‘fuzzyfication’ of X: the algebra
A of functions on X is replaced by an algebra A of operators, which may be seen as the
‘coordinates’ of a fuzzy version of X.

It is well known that (some aspects of) ordinary quantum mechanics may be seen
as a non-commutative version of the geometry of the phase space, where position and
momentum operators do not commute. In this regard, the quantization of a set of data
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makes a fuzzy (non-commutative) geometry to emerge (Madore 1995). We will show
explicitly how the CS quantization of the ordinary sphere leads to a fuzzy geometry.

However, although A is isomorphic to the algebra of the usual fuzzy sphere, the CSQ
does not lead to the usual fuzzy geometry, as we will show explicitly: the correspondence
classical �→ quantum is different, and the CSQ provides, by construction, an action of
A on a Hilbert space of functions on X. In this sense, the CSQ can really be seen as a
different and more complete fuzzyfication procedure.

• Finally, this procedure is, to a certain extent, a change of point of view in considering
the system X, not necessarily a path to quantum physics. In this sense, it could be called
a discretization or a regularization (Taylor 2001). It shows a similitude with standard
procedures pertaining to signal processing, for instance those involving wavelets, which
are coherent states for the affine group transforming the half-plane time scale into itself
(Daubechies 1992, Ali et al 2000). In many respects, the choice of a quantization appears
here as the choice of a resolution in looking at the system.

In section 2 we present a construction of coherent states which is very general and
encompasses most of the known constructions, and we derive from the existence of a CS
family what we call the CS quantization. This quantization extends to various situations the
well-known Klauder–Berezin quantization. The formalism is illustrated with the standard
Glauber–Klauder–Sudarshan coherent states and the related canonical quantization of the
classical phase space of the motion on the real line.

In section 3, we apply the formalism to the sphere S2 by using orthonormal families of
spin spherical harmonics (σ Yjm)−j�m�j (Newman and Penrose 1966, Goldberg et al 1967,
Campbell 1971). For a given σ such that 2σ ∈ Z and j such that 2|σ | � 2j ∈ N, there
corresponds a continuous family of coherent states and the subsequent (2j + 1)-dimensional
quantization of the 2-sphere. For a given j , we thus get 2j + 1 inequivalent quantizations,
corresponding to the possible values of σ . Note that the classical Gilmore–Radcliffe case
(Gilmore 1972, Radcliffe 1971) correspond to the particular value σ = j , and that for a
generic σ our coherent states are the SU(2) Perelomov coherent states (Perelomov 1972,
Perelomov 1986) built from the UIR group action on a fiducial state |j, σ 〉. On the other hand,
the case σ = 0 is proved to be singular in the sense that it leads to a null quantization of the
Cartesian coordinates of the 2-sphere.

Section 4 establishes the link between the CS quantization approach to the 2-sphere and
the Madore construction (Madore 1995, Lachièze-Rey et al 2003) of the fuzzy sphere. We
examine in that section the question of equivalence between the two procedures. Note that a
construction of the fuzzy sphere based on Gilmore–Perelomov–Radcliffe coherent states (in
the case σ = j ) has already been carried out by Grosse and Pres̆najder (1993). They proceed
to a covariant symbol calculus à la Berezin with its corresponding �-product. However, their
approach is different from ours.

The appendices give an exhaustive set of formulae, particularly concerning the spin
spherical harmonics, needed for a complete description of our CS approach to the 2-sphere.

2. Coherent states

2.1. The construction

The (classical) system to be quantized is considered as a set of data, X = {x ∈ X}, assumed
to be equipped with a measure µ defined on a σ -field B. We consider the Hilbert spaces
L2

K(X,µ) (K = R or C) of real or complex functions, with the usual Hermitian inner product
〈f |g〉. The quantization is defined by the choice of a closed subspace H of L2

K(X, dµ). The
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only requirements on H, in addition to be a Hilbert space, amount to the following technical
conditions.

• For all ψ ∈ H and all x,ψ(x) is well defined (this is, of course, the case whenever X is a
topological space and the elements of H are continuous functions),

• the linear map (evaluation map)

δx :H → K ψ �→ ψ(x) (1)

is continuous with respect to the topology of H, for almost all x.

The latter condition is realized as soon as the space H is finite dimensional since all the
linear forms are continuous in this case. We see below that some other examples can be found.

As a consequence, using the Riesz theorem, there exists, for almost all x, a unique element
px ∈ H (a function) such that

〈px |ψ〉 = ψ(x). (2)

We define the coherent states as the normalized vectors corresponding to px written in Dirac
notation:

|x〉 ≡ |px〉
[N (x)]

1
2

, where N (x) ≡ 〈px |px〉. (3)

One can see at once that, for any ψ ∈ H,

ψ(x) = [N (x)]
1
2 〈x|ψ〉. (4)

As a consequence, one obtains the following resolution of the identity of H which is at the
basis of the whole construction:

IdH =
∫

|x〉〈 x|N (x)µ (dx). (5)

This equation is a direct consequence of the following equalities:

〈ψ1|
∫

|x〉〈 x|N (x)µ(dx)|ψ2〉 =
∫

〈ψ1|x〉〈x|ψ2〉N (x)µ(dx)

=
∫

ψ∗
1 (x)ψ2(x)µ(dx)

= 〈ψ1|ψ2〉,
which hold for any ψ1, ψ2 ∈ H.

Note that

φ(x) =
∫

X

√
N (x)N (x ′)〈x|x ′〉φ(x ′)µ(dx ′), ∀φ ∈ H. (6)

Hence, H is a reproducing Hilbert space with kernel

K(x, x ′) =
√
N (x)N (x ′)〈x|x ′〉, (7)

and the latter assumes finite diagonal values (a.e.), K(x, x) = N (x), by construction. Note
that this construction yields an embedding of X into H, and one could interpret |x〉 as a state
localized at x once a notion of localization has been properly defined on X.

In view of (5), the set {|x〉} is called a frame for H. This frame is said to be overcomplete
when the vectors {|x〉} are not linearly independent (Ali et al 1993, Ali et al 2004).

We define a classical observable over X in a loose way as a function f : X �→ K (R or
C). As a matter of fact, we will not retain a priori the usual requirements on f like to be real
valued and smooth with respect to some topology defined on X.
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With any such function f we associate the quantum observable over H through the map:

f �→ Af ≡
∫

X

N (x)µ(dx)f (x)|x〉〈 x|. (8)

The operator corresponding to a real function is Hermitian by construction. Hereafter, we will
also use the notation f̃ for Af .

The existence of the continuous frame {|x〉} enables us to carry out a symbolic calculus in
the style of Berezin–Lieb (Berezin 1975, Lieb 1994). With each linear, self-adjoint operator
(observable) O acting on H, one associates the lower (or covariant) symbol

Ǒ(x) ≡ 〈 x|O |x〉, (9)

and the upper (or contravariant) symbol (not necessarily unique) Ô such that

O =
∫

X

N (x)µ(dx)Ô(x)|x〉〈 x|. (10)

Note that f is a upper symbol of Af .
The technical conditions and the definition of coherent states can be easily expressed

when we have a Hilbertian basis of H. Let (φn)n∈I be such a basis; the technical condition is
equivalent to ∑

n

|φn(x)|2 < ∞ a.e. (11)

The coherent state is then defined by

|x〉 = 1

(N (x))
1
2

∑
n

φ∗
n(x)φn with N (x) =

∑
n

|φn(x)|2.

To a certain extent, the quantization scheme presented here consists in adopting a certain point
of view in dealing with X, determined by the choice of the space H. This choice specifies
the admissible quantum states, and the correspondence ‘classical observables versus quantum
observables’ follows.

2.2. The standard coherent states

Let us illustrate the above construction for the dynamics of a particle moving on the real
line. This leads to the well-known Klauder–Glauber–Sudarshan coherent states (Klauder
and Skagerstam 1985) and the subsequent so-called canonical quantization (with a slight
difference of notation). The construction can be easily extended to the dynamics of the
particle in a flat higher dimensional spacetime. The observation set X is the classical phase
space R2 � C = {

z = 1√
2
(q + ip)

}
(in complex notations) of a particle with 1 degree of

freedom. The symplectic form identifies with i
2 dz ∧ dz̄ ≡ d2z, the Lebesgue measure of the

plane. Here we adopt the Gaussian measure on X,µ(dz) = 1
π

e−|z|2 d2z.
The quantization of X is hence achieved by a choice of polarization (in the language of

geometric quantization): the selection, in L2(X, dµ), of the Hilbert subspace H defined as
the so-called Fock–Bargmann space of all antiholomorphic entire functions that are square
integrable with respect to the Gaussian measure.

The Hilbertian basis is given by the functions φn(z) ≡ z̄n√
n!

, the normalized powers of the

conjugate of the complex variable z. Thus, since
∑

n
|z|2
n! = e|z|2 , the coherent states read

|z〉 = e− |z|2
2

∑
n

zn

√
n!

|n〉, (12)
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where |n〉 stands for φn, and one easily checks the normalization and resolution of the unity:

〈z|z〉 = 1,
1

π

∫
C

|z〉〈z|d2z = IdH. (13)

Note that the reproducing kernel is simply given by K(z, z′) = ezz̄′
.

A large class of operators acting on H are yielded by using (8), precisely all operators
which can be expressed in a diagonal form with respect the CS family. We thus have for the
most basic one,

a ≡ Az = 1

π

∫
C

z|z〉〈z| d2z =
∑

n

√
n + 1|n〉〈n + 1|, (14)

which appears as the lowering operator, a|n〉 = √
n|n − 1〉. Its adjoint a† is obtained

by replacing z by z̄ in (14), and we get the factorization N = a†a for the number
operator, together with the commutation rule [a, a†] = IdH. Also note that a† and a realize
themselves as a multiplication operator and derivation operator respectively when acting on
H, a†f (z) = zf (z), af = df/dz. From q = 1√

2
(z + z̄) et p = 1√

2i
(z − z̄), one easily infers

by linearity that q and p are upper symbols for 1√
2
(a + a†) ≡ Q and 1√

2i
(a − a†) ≡ P

respectively. In consequence, the (essentially) self-adjoint operators Q and P obey the
canonical commutation rule [Q,P ] = iIdH, and for this reason fully deserve the name of
position and momentum operators of the usual (Galilean) quantum mechanics, together with
all localization properties specific to the latter.

3. Quantizations of the 2-sphere

3.1. The 2-sphere

We now apply our method to the quantization of the observation set X = S2, the unit 2-sphere.
This is not to be confused with the quantization of the phase space for the motion on the 2-
sphere (i.e. quantum mechanics on the 2-sphere; see, for instance, (Kowalski and Rembielinski
2000, 2001, Hall and Mitchell 2002)). A point of X is denoted by its spherical coordinates,
x = (θ, φ). Through the usual embedding in R3, we may see x as a point x = (xi) ∈ R3

obeying
∑3

i=1(x
i)2 = 1. We adopt on S2 the normalized measure µ(dx) = sin θ dθ dφ/4π ,

proportional to the SO(3)-invariant measure, which is also the surface element.
We know that µ is a symplectic form, with the canonical coordinates q = φ, p = −cos θ .

This allows us to see S2 itself as the phase space for the theory of (classical) angular momentum.
In this spirit, we will be able to interpret our procedure as the construction of families of
spin coherent states including the Gilmore–Radcliffe and analogous to the Perelomov ones
(Perelomov 1986) (hereafter, GPR). Also, our construction will take advantage of the group
action of SO(3) on S2 embedded in R3. This three-dimensional group acts as isometries in
R3, as rotations in S2. However, we emphasize again that our quantization procedure is based
on the only existence of a measure, and may be used in the absence of a metric or symplectic
structure.

3.2. The CS quantization of the 2-sphere

3.2.1. The Hilbert space and the coherent states. At the basis of the CS quantization
procedure is the choice of a finite dimensional Hilbert space, which is a subspace of L2(S2),
and which carries a UIR of the group SU(2). We write its dimension (2j + 1), with j as the
integer or half-integer. Although it could have appeared natural to select this space as V j , the
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linear span of ordinary spherical harmonics Yjm, this choice would not allow us to consider
half-integer values of j . Moreover, it happens that the quantization so obtained gives trivial
results for the Cartesian coordinates. Namely, the quantum counterparts of the Cartesian
coordinates (or, equivalently, the spherical harmonics Y1m) are identically zero. Thus, we are
led to define H on a general setting as the linear span of spin spherical harmonics (hereafter
SSHs).

3.2.2. The spin spherical harmonics. We define H = Hσj as the vector space spanned by
the spin spherical harmonics σ Yjµ ∈ L2(S2), where −j � σ,µ � j , and σ is fixed in this
range. Note that σ and j are both integers or semi-integers. The SSHs were first introduced
in (Newman and Penrose 1966) (see also (Campbell 1971) and (Goldberg et al 1967) for
their main properties). In view of their importance in the context of the present work, they are
comprehensively described in appendix A. The special case σ = 0 corresponds to the ordinary
spherical harmonics

0Yjm = Yjm.

A CS quantization is defined after a choice of values for j and σ that we consider as
fixed in the following. With the usual inner product of L2(S2), the SSHs provide an ON basis
(σ Yjµ)µ=−j ...j of Hσj (hereafter, the SSH basis).

The Hilbert space Hσj carries the (2j + 1)-dimensional UIR of SU(2) (see
appendix A). The generators of SU(2) in this representation can be taken as those
corresponding to the three rotations around the orthogonal axes of x1, x2, x3. They are
called the ‘spin’ angular momentum operators (SAMOs, to be distinguished from the usual
angular momentum operators Ji), and will be written as �

σj
a . Hereafter, the index a = 1, 2, 3

will refer to the three spatial directions. We have �
0j
a = Ja , the usual angular momentum

operators. As usual, we define �
σj
ε = �

σj

1 + ε i�σj

2 , ε = ±1. All these generators obey the
usual commutation relations of the group SU(2). They act on the ON basis as

�
σj

3 σ Yjµ = µσYjµ, �σj
ε σ Yjµ = aε(j, µ)σ Yjµ+ε, (15)

where aε(j, µ), given in (A.39)–(A.40), are the same as for the usual angular momentum
operators Ja .

The SSH basis allows us to identify Hσj with C2j+1:

σ Yjµ � |µ〉 ↪→ (0, . . . , 0, 1, 0, . . . , 0)t with µ = −j,−j + 1, . . . , j, (16)

where 1 is at the position µ and the superscript t denotes the transpose. By construction, we
have the Hilbertian orthonormality relations:

〈µ|ν〉 ≡
∫

X

µ(dx)σ Y ∗
jµ(x)σ Yjν(x) = δµν. (17)

The CS construction presented in section 2.1 leads to the following class of coherent
states:

|x〉 = |θ, φ〉 = 1√
N (x)

j∑
µ=−j

σ Y ∗
jµ(x)|µ〉; |x〉 ∈ H, (18)

with

N (x) =
j∑

µ=−j

|σ Yjµ(x)|2 = 2j + 1

4π
.

For σ = ±j , they reduce to the spin coherent states (Gilmore 1972, Radcliffe 1971,
Perelomov 1972, Perelomov 1986).
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3.2.3. Operators. We call Oσj ≡ End(Hσj ) the space of linear operators (endomorphisms)
acting on Hσj . This is a complex vector space of dimension (2j + 1)2 and an algebra
for the natural composition of endomorphisms. The SSH basis allows us to write a linear
endomorphism of Hσj (i.e. an element of Oσj ) in a matrix form. This provides the algebra
isomorphism

Oσj � Mat2j+1,

the algebra of complex matrices of order 2j + 1, equipped with the matrix product.
The projector |x〉〈 x| is a particular linear endomorphism of Hσj , i.e. an element of Oσj .

Being Hermitian by construction, it may be seen as a Hermitian matrix of order 2j + 1, i.e. an
element of Herm2j+1 ⊂ Mat2j+1. Note that Herm2j+1 and Mat2j+1 have respective (complex)
dimensions (j + 1)(2j + 1) and (2j + 1)2.

We get by the construction resolution of identity and normalization:∫
S2

µ(dx)N (x)|x〉〈 x| = Id, 〈x|x〉 = 1.

3.2.4. Observables. According to the prescription (8), the CS quantization associates with
the classical observable f : S2 �→ C the quantum observable

f̃ ≡ Af =
∫

µ(dx)f (x)N (x)|x〉〈 x|

=
j∑

µ,ν=−j

∫
µ(dx)f (x)[σ Yjµ(x)]∗σ Yjν(x)|µ〉〈 ν|. (19)

This operator is an element of Oσj ∼ End(Hσj ) � Mat(2j+1). Of course, its existence is
submitted to the convergence of (19) in the weak sense as an operator integral. The expression
above gives directly its expression as a matrix in the SSH basis, with matrix elements f̃ µν :

f̃ =
j∑

µ,ν=−j

f̃ µν |µ〉〈 ν| with f̃ µν =
∫

µ(dx)f (x)σ Y ∗
jµ(x)σYjν(x). (20)

When f is real valued, the corresponding matrix belongs to Herm(2j+1). Also, we have
f̃ ∗ = (f̃ )† (matrix transconjugate), where we have used the same notation for the operator
and the associated matrix.

3.2.5. The usual spherical harmonics as classical observables. A usual spherical harmonics
Y�m is a particular classical observable and, as such, may be quantized. The quantization
procedure associates with Y�m the operator Ỹ�m. The details of the computation are given in
appendix A and the result is given in appendix A.13, equation (A.59). We hence obtain the
matrix elements of Ỹ�m in the SSH basis:

[Ỹ�m]µν = (−1)σ−µ(2j + 1)

√
(2� + 1)

4π

(
j j �

−µ ν m

)(
j j �

−σ σ 0

)
, (21)

in terms of the 3j -symbols. This generalizes formula (2.7) of (Freidel and Krasnov 2002).
This expression is a real quantity.

Any function f on the 2-sphere with reasonable properties (continuity, integrability . . . )
may be expanded in spherical harmonics as

f =
∞∑

�=0

�∑
m=−�

f�mY�m, (22)
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from which follows the corresponding expansion of f̃ . However, the 3j -symbols are non-zero
only when a triangular inequality is satisfied. This implies that the expansion is cut at a finite
value, giving

f̃ =
2j∑

�=0

�∑
m=−�

f�mỸ�m. (23)

This relation means that the (2j + 1)2 observables (Ỹ�m)��2j,−��m�� provide a second (SH)
basis of Oσj .

f�m are the components of the matrix f̃ ∈ Oσj in this basis.

3.3. The spin angular momentum operators

3.3.1. Action on functions. The Hilbert space Hσj carries a unitary irreducible representation
of the group SU(2) with generators �

σj
a (the SAMOs), which belong to Oσj . Their action is

given in (A.38)–(A.40). Explicit calculations shown in appendix A (see A.66) give the crucial
relations:

x̃a = K�σj
a with K ≡ σ

j (j + 1)
. (24)

We see here the peculiarity of the ordinary spherical harmonics (σ = 0) as an ON basis
for the quantization procedure: they would lead to a trivial result for the quantized version of
the Cartesian coordinates! On the other hand, the quantization based on the Gilmore–Radcliffe
spin coherent states yields the maximal value: K = 1/(j + 1). Hereafter, we assume σ �= 0.

3.3.2. Action on operators. The SU(2) action on Hσj induces the following canonical
(infinitesimal) action on Oσj = End(Hσj ):

Lσj
a �→ Lσj

a A ≡ [
�σj

a , A
]

(the commutator), (25)

here expressed through the generators.

We prove in appendix A (A.72) that Lσj
a Ỹ�m = J̃aY�m , from which there results

Lσj

3 Ỹ�m = mỸ�m and (Lσj )2Ỹ�m = �(� + 1)Ỹ�m.

We recall that (Ỹ�m)��2j form a basis of Oσj . The relations above make Ỹ�m appear as the
unique (up to a constant) element of Oσj that is a common eigenvector to Lσj

3 and (Lσj )2,
with eigenvalues m and �(� + 1) respectively. This implies by linearity that for all f such that
f̃ makes sense,

Lσj
a f̃ = J̃af and (Lσj )2f̃ = J̃ 2f .

4. Link with the Madore fuzzy sphere

4.1. The construction of the fuzzy sphere in the style of Madore

Let us first recall a usual construction of the fuzzy sphere (see, for instance, Madore (1995,
p 148)) that we slightly modify to make the correspondence with the CS quantization. It starts
from the decomposition of any smooth function f ∈ C∞(S2) in spherical harmonics,

f =
∞∑

�=0

�∑
m=−�

f�mY�m. (26)

Let us denote by V � the (2� + 1)-dimensional vector space generated by Y�m, at fixed �.
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Through the embedding of S2 in R3 any function in S2 can be seen as the restriction of a
function on R3 (that we write with the same notation), and under some mild conditions such
functions are generated by the homogeneous polynomials in R3. This allows us to express
(26) in a polynomial form in R3:

f (x) = f(0) +
∑
(i1)

f(i)x
i + · · · +

∑
(i1i2...i�)

f(i1i2...i�)x
i1xi2 . . . xi� + · · · , (27)

where each sub-sum is restricted to V � and involves all symmetric combinations of the ik
indices, each one varying from 1 to 3. This gives, for each fixed value of �, 2� + 1 coefficients
f(i1i2...i�) (� fixed), which are those of a symmetric traceless 3 × 3 × · · · × 3 (� times) tensor.

The fuzzy sphere with 2j + 1 cells is usually written as Sfuzzy,j , with j as an integer or
semi-integer. Here our slightly modified procedure leads to a different fuzzy sphere that we
write σ Sfuzzy,j. We detail the steps of its standard definition.

(1) We consider a (2j + 1)-dimensional irreducible unitary representation (UIR) of SU(2).
The standard construction considers the vector space V j of dimension 2j + 1, on which
the three generators of SU(2) are expressed as the usual (2j + 1) × (2j + 1) Hermitian
matrices Ja . Here we will make a different choice, namely the three SAMOs �j , which
correspond to the choice of the representation space Hσj (instead of V j in the usual
construction). Since they obey the commutation relations of su(2),[

�σj
a ,�

σj

b

] = iεabc�
σj
c , (28)

the usual procedure may be applied. As we have seen, Hσj can be realized as the
Hilbert space spanned by the spin spherical harmonics {σ Yjµ}µ=−j ...j , with the usual
inner product. The latter provides the SSH (ON) basis.

Since the standard derivation of all properties of the fuzzy sphere rests only upon the
abstract commutation rules (28), nothing but the representation space changes if we adopt
the representation space H instead of V .

(2) The operators �
σj
a belong to Oσj and have a Lie algebra structure through the skew

products defined by the commutators. But the symmetrized products of operators provide
a second algebra structure, that we write Oσj , at the basis of the construction of the fuzzy
sphere: these symmetrized products of �

σj
a , up to power 2j , generate the algebra Oσj (of

dimension (2j + 1)2) of all linear endomorphisms of Hσj , exactly like the ordinary Ja’s
do in the original Madore construction. This is the standard construction of the fuzzy
sphere, with Ja and V j replaced by �

σj
a and Hσj respectively.

(3) The construction of the fuzzy sphere (of radius r) is defined by associating an operator f̂

in Oσj with any function f . Explicitly, this is done by first replacing each coordinate xi

by the operator

x̂a ≡ κ�σj
a ≡ r�

σj
a√

j (j + 1)
, (29)

in the above expansion (27) of f (in the usual construction, this would be Ja instead of
�

σj
a ). Next, we replace in (27) the usual product by the symmetrized product of operators,

and we truncate the sum at index � = 2j . This associates with any function f an operator
f̂ ∈ Oσj .

(4) The vector space Mat2j+1 of (2j +1)× (2j +1) matrices is linearly generated by a number
(2j +1)2 of independent matrices. According to the above construction, a basis of Mat2j+1

can be selected as formed by all the products of �
σj
a up to the power 2j + 1 (which is

necessary and sufficient to close the algebra).
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(5) The commutative algebra limit is restored by letting j go to the infinity while parameter
κ goes to zero, and κj is fixed to κj = r .

The geometry of the fuzzy sphere Sfuzzy,j is thus constructed after making the choice of
the algebra of the matrices of the representation, with their matrix product. It is taken as the
algebra of operators, which generalize the functions. The rank (2j + 1) of the matrices invites
us to view them as acting as endomorphisms in a Hilbert space of dimension (2j + 1). This is
exactly what allows the coherent states quantization introduced in the previous section.

4.2. Operators

We have defined the action on Oσj :

Lσj
a A ≡ [

�σj
a , A

]
.

Formula (27) expresses any function f of V � as the reduction to S2 of homogeneous
polynomials, homogeneous of order �:

f =
∑
α,β,γ

fα,β,γ (x1)α(x2)β(x3)γ ; α + β + γ = �.

The action of the ordinary momentum operators J3 and J 2 is straightforward. Namely,

J3f =
∑
α,β,γ

fα,β,γ (−i)[β(x1)α+1(x2)β−1(x3)γ − α(x1)α−1(x2)β+1(x3)γ ],

and similarly for J1 and J2.
On the other hand, we have by definition

f̂ =
∑
α,β,γ

fα,β,γ S((x̂1)α(x̂2)β(x̂3)γ ), (30)

where S(·) means symmetrization. Recalling x̂a = κ�
σj
a , and using (28), we apply the

operator Lσj

3 to this expression:

Lσj

3 f̂ ≡ [
�

σj

3 , f̂
] =

∑
α,β,γ

fα,β,γ

[
�

σj

3 , S
(
x̂1

α
x̂2

β
x̂3

γ )]
. (31)

We prove in appendix B that the commutator of the symmetrized is the symmetrized of
the commutator. Then, using the identity

[J,AB · · ·M] = [J,A]B · · · M + A[J, B] · · · M + · · · + AB · · · [J,M],

which results easily (by induction) from [J,AB] = [J,A]B + A[J, B], it follows that

Lσj

3 f̂ ≡ [
�

σj

3 , f̂
] =

∑
α,β,γ

fα,β,γ

(
iαx̂1

α−1
x̂2

β+1
x̂3

γ − iβx̂1
α+1

x̂2
β−1

x̂3
γ )

. (32)

We have thus proven

Lσj

3 f̂ = Ĵ3f .

Similar identities hold for Lσj

1 ,Lσj

2 and thus for (Lσj )2.
There results that Ŷ�m appears as an element of Oσj which is a common eigenvector of

Lσj

3 , with the value m, and of (Lσj )2, with the value �(� + 1). Since we have proved above that
such an element is unique (up to a constant), there results that each Ŷ�m ∝ Ỹ�m. Thus, Ŷ�m’s,
for � � j,−j � m � j form a basis of Aj .

Then the Wigner–Eckart theorem (see appendix A.15) implies that Ỹ�m = C(�)Ŷ�m, where
the proportionality constant C(�) does not depend on m (that can also be checked directly).



10236 J P Gazeau et al

Table 1. Coherent state quantization of the sphere is compared to the standard construction of the
fuzzy sphere through the correspondence formula.

Coherent states Madore-like
fuzzy sphere fuzzy sphere

Hilbert space H = Hσj = span(σ Yjµ) ⊂ L2(S2)

Endomorphisms O = Oσj = EndHσj

Spin angular momentum operators �
σj
a ∈ O

Observables f̃ ∈ Oσj ; x̃a = K�
σj
a f̂ ∈ Oσj ; x̂a = κ�

σj
a

Action of angular momentum Lσj
a f̃ ≡ [�σj

a , f̃ ] = J̃af Lσj
a f̂ ≡ [�σj

a , f̂ ] = Ĵaf

Correspondence Ỹ�m = C(�)Ŷ�m

These coefficients can be calculated directly, after remarking that

Ŷ�� ∝ (�+)
� ∝ (x̂1 + ix̂2)�.

In fact,

Ŷ�� = a(�)(x̂1 + ix̂2)�, a(�) =
√

(2� + 1)!

2�+1
√

π�!
.

We obtain

C(�) = 2� (−1)j+σ−2�(2j + 1)

κ�

√
(2j − �)!

(2j + � + 1)!

(
j j �

−σ σ 0

)
.

5. Discussion

We thus have two families of quantization of the sphere.

• The usual construction of the fuzzy sphere, which depends on the parameter j . This
parameter defines the ‘size’ of the discrete cell.

• The present construction coherent states which make use of coherent states and which
depend on two parameters, j and σ �= 0.

These two quantizations may be formulated as involving the same algebra of operators
(quantum observables) O, acting on the same Hilbert space H (see table 1). Note that H
and O are not the Hilbert space and algebra appearing in the usual construction of the fuzzy
sphere (when we consider them as embedded in the space of functions on the sphere and of
operators acting on them), but they are isomorphic to them, and nothing is changed.

The difference lies in the fact that the quantum counterparts, f̃ and f̂ , of a given classical
observable f differ in both approaches. Thus, the CS quantization really differs from the usual
fuzzy sphere quantization. This raises the question if whether the CS quantization is or not a
construction of a new type of fuzzy sphere. There results from the calculations above that all
properties of the usual fuzzy sphere are shared by the CS quantized version. The only point
to be checked is whether it gives the sphere manifold in some classical limit. The answer is
positive as far as the classical limit is correctly defined. Simple calculations show that it is
obtained as the limit j �→ ∞, σ �→ ∞, provided that the ratio σ/j tends to a finite value.
Thus, one may consider that the CS quantization leads to a one (discrete) parameter family of
fuzzy spheres if we impose relations of the type σ = j − σ0, for fixed σ0 > 0 (for instance).
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6. Conclusion

We have first described a general quantization procedure which applies to any measurable
set X. It proceeds from the choice of a Hilbert space H of prescribed dimension. We have
presented in details an implementation of this procedure (not necessarily unique) by using an
explicit family of coherent states, which realizes a natural embedding of X into H. Actually,
we proceed to a ‘non-commutative’ reading of a given geometry and not of a given dynamical
system, and the procedure can be viewed as a (canonical or not) quantization when we restrict
it to the latter. This means that we do not consider from the very beginning any time parameter
and related evolution.

We have applied this CS procedure to the sphere S2. We started from a natural basis
linked to the UIRs of the group SU(2): for any value of j and σ , we chose the Hilbert
space Hσj , which carries a UIR of SU(2). Our CS construction associates, with any classical
observable f ∈ L2, a quantum observable f̃ , which belongs to the algebra of endomorphisms
Oσj ≡ End(Hσj ). On the other hand, we also followed the usual fuzzy sphere construction
(with 2j + 1 cells), by replacing the coordinates by operators acting on the same Hilbert space.
This allowed us to associate a fuzzy observable f̂ to any classical observable f . Those f̂

form the algebra of operators acting on the fuzzy sphere.
For the particular classical observables provided by the ordinary spherical harmonics,

we have shown that the CS quantum observable and the fuzzy observable coincide up to a
constant, Ŷ�m = C(�)Ỹ�m, and the explicit value of this constant has been given. However, in
general, f̃ differs from f̂ , although the correspondence is easily established from the relation
above, through a development in the usual spherical harmonics.

Thus, the CS quantization procedure really differs from the construction of the usual
fuzzy sphere. Although they share the same algebra of quantum observables, acting on the
same Hilbert space, the CS quantum observables, f̃ , and the fuzzy one, f̂ , associated with
the same classical observable f differ. There is no way to make them coincide, since the CS
quantization with σ = 0 leads to trivial results.

Our discussion in (5) allows us to consider our CS quantization procedure as a construction
of a new family of fuzzy spheres, with properties differing from the standard one. They share
most of the properties of the usual fuzzy sphere, but the construction is by far more economic
in the sense that

• it does not require a group action on the space to be quantized,
• it does not require an initial expansion of the functions into spherical harmonics.

Applications of procedures of this type to the sphere have appeared in different contexts.
For instance, a similar procedure is carried out in Taylor (2001) in order to achieve a
regularization of a membrane, with the surface S2, by a mapping of functions to matrices,
similar to the one presented here. Despite analog mathematics, the procedure there is not
seen as a quantization and, according to the author, the regularized theory still requires a
further quantization. Similar regularization exists for surfaces of arbitrary genus, and it would
be interesting to apply the CS procedure in these cases. Also, it should not be difficult to
explore cases with more dimensions, and in particular S3. This offers possibilities to construct
new fuzzy versions of these spaces. Moreover, the authors in (Freidel and Krasnov 2002)
have given a description of the fuzzy sphere in terms of SU(2) spin networks. Since the latter
plays an important role in the canonical quantization of general relativity, this suggests that the
application of the CS procedure to the quantization of gravity or to various geometries, compact
or non-compact (Gazeau et al 2006), could be fruitful, a program that we start to explore.
Furthermore, the universality of the CS procedure would allow explicit constructions of spin



10238 J P Gazeau et al

networks associated with different groups, in particular SU(3). Since it has been claimed that
the latter could be of importance for quantum gravity, this reveals to be a promising field of
research also.

Appendix A. Spin spherical harmonics

A.1. SU(2)-parameterization

SU(2) � ξ =
(

ξ0 + iξ3 −ξ2 + iξ1

ξ2 + iξ1 ξ0 − iξ3

)
. (A.1)

In bicomplex angular coordinates,

ξ0 + iξ3 = cos ωeiψ1 , ξ1 + iξ2 = sin ωeiψ2 (A.2)

0 � ω � π

2
, 0 � ψ1, ψ2 < 2π, (A.3)

and so

SU(2) � ξ =
(

cos ωeiψ1 i sin ωeiψ2

i sin ωe−iψ2 cos ωe−iψ1

)
, (A.4)

in agreement with (Talman 1968).

A.2. Matrix elements of SU(2)-UIR

Dj
m1m2

(ξ) = (−1)m1−m2 [(j + m1)!(j − m1)!(j + m2)!(j − m2)!]
1/2

×
∑

t

(ξ0 + iξ3)
j−m2−t

(j − m2 − t)!

(ξ0 − iξ3)
j+m1−t

(j + m1 − t)!

(−ξ2 + iξ1)
t+m2−m1

(t + m2 − m1)!

(ξ2 + iξ1)
t

t!
, (A.5)

in agreement with Talman. With angular parameters, the matrix elements of the UIR of SU(2)

are given in terms of Jacobi polynomials (Magnus et al 1966) by

Dj
m1m2

(ξ) = e−im1(ψ1+ψ2) e−im2(ψ1−ψ2)im2−m1

√
(j − m1)!(j + m1)!

(j − m2)!(j + m2)!

× 1

2m1
(1 + cos 2ω)

m1+m2
2 (1 − cos 2ω)

m1−m2
2 P

(m1−m2,m1+m2)
j−m1

(cos 2ω), (A.6)

in agreement with (Edmonds 1968) (up to an irrelevant phase factor).

A.3. Orthogonality relations and 3j -symbols

Let us equip the SU(2) group with its Haar measure:

µ(dξ) = sin 2ω dω dψ1 dψ2, (A.7)

in terms of the bicomplex angular parametrization. Note that the volume of SU(2) with this
choice of normalization is 8π2. The orthogonality relations satisfied by the matrix elements
D

j
m1m2(ξ) read as∫

SU(2)

Dj
m1m2

(ξ)
(
D

j ′

m′
1m

′
2
(ξ)

)∗
µ(dξ) = 8π2

2j + 1
δjj ′δm1m

′
1
δm2m

′
2
. (A.8)
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In connection with the reduction of the tensor product of two UIRs of SU(2), we have the
following equivalent formula involving the so-called 3 − j symbols (proportional to Clebsch–
Gordan coefficients), in the Talman notations:

Dj
m1m2

(ξ)D
j ′

m′
1m

′
2
(ξ) =

∑
j ′′m′′

1m
′′
2

(2j ′′ + 1)

(
j j ′ j ′′

m1 m′
1 m′′

1

)(
j j ′ j ′′

m2 m′
2 m′′

2

) (
D

j ′′

m′′
1m

′′
2
(ξ)

)∗
, (A.9)

∫
SU(2)

Dj
m1m2

(ξ)D
j ′

m′
1m

′
2
(ξ)D

j ′′

m′′
1m

′′
2
(ξ)µ(dξ) = 8π2

(
j j ′ j ′′

m1 m′
1 m′′

1

)(
j j ′ j ′′

m2 m′
2 m′′

2

)
. (A.10)

One of the multiple expressions of the 3 − j symbols (in the convention that they are all real)
is given by(

j j ′ j ′′

m m′ m′′

)
= (−1)j−j ′−m′′

[
(j + j ′ − j ′′)!(j − j ′ + j ′′)!(−j + j ′ + j ′′)!

(j + j ′ + j ′′ + 1)!

]1/2 ∑
s

(−1)s

× [(j + m)!(j − m)!(j ′ + m′)!(j ′ − m′)!(j ′′ + m′′)!(j ′′ − m′′)!]1/2

s!(j ′ + m′ − s)!(j − m − s)!(j ′′ − j ′ + m + s)!(j ′′ − j − m′ + s)!(j + j ′ − j ′′ − s)!
.

(A.11)

A.4. Spin spherical harmonics

The spin spherical harmonics, as functions on the 2-sphere S2, are defined as follows:

σ Yjµ(r̂) =
√

2j + 1

4π

[
Dj

µσ (ξ(Rr̂))
]∗ = (−1)µ−σ

√
2j + 1

4π
D

j
−µ−σ (ξ(Rr̂)) (A.12)

=
√

2j + 1

4π
Dj

σµ(ξ †(Rr̂)), (A.13)

where ξ(Rr̂) is a (non-unique) element of SU(2) which corresponds to the space rotation Rr̂

which brings the unit vector ê3 to the unit vector r̂ with polar coordinates:

r̂ =


x1 = sin θ cos φ,

x2 = sin θ sin φ,

x3 = cos θ.

(A.14)

We immediately infer from definition (A.12) the following properties:

(σ Yjµ(r̂))� = (−1)σ−µ−σ Yj−µ(r̂), (A.15)

µ=j∑
µ=−j

|σ Yjµ(r̂)|2 = 2j + 1

4π
. (A.16)

Let us recall here the correspondence (homomorphism) ξ = ξ(R) ∈ SU(2) ↔ R ∈ SO(3) �
SU(2)/Z2:

r̂′ = (x ′
1, x

′
2, x

′
3) = R · r̂ ←→ (A.17)(

ix ′
3 −x ′

2 + ix ′
1

x ′
2 + ix ′

1 −ix ′
3

)
= ξ

(
ix3 −x2 + ix1

x2 + ix1 −ix3

)
ξ †. (A.18)

In the particular case of (A.12), the angular coordinates ω,ψ1, ψ2 of the SU(2)-element ξ(Rr̂)

are constrained by
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cos 2ω = cos θ, sin 2ω = sin θ so 2ω = θ, (A.19)

ei(ψ1+ψ2) = ieiφ so ψ1 + ψ2 = φ +
π

2
. (A.20)

Here we should pay a special attention to the range of values for the angle φ, depending on
whether j and consequently σ and m are half-integers or not. If j is half-integer, then the angle
φ should be defined as mod(4π) whereas if j is an integer, it should be defined as mod(2π).

We still have one degree of freedom concerning the pair of angles ψ1, ψ2. We leave open
the option concerning the σ -dependent phase factor by putting

i−σ eiσ(ψ1−ψ2) def= eiσψ, (A.21)

where ψ is arbitrary. With this choice and considering (A.5), we get the expression of the spin
spherical harmonics in terms of φ, θ/2 and ψ :

σ Yjµ(r̂) = (−1)σ eiσψ eiµφ

√
2j + 1

4π

√
(j + µ)!(j − µ)!

(j + σ)!(j − σ)!

×
(

cos
θ

2

)2j ∑
t

(−1)t
(

j − σ

t

)(
j + σ

t + σ − µ

)(
tan

θ

2

)2t+σ−µ

, (A.22)

= (−1)σ eiσψ eiµφ

√
2j + 1

4π

√
(j + µ)!(j − µ)!

(j + σ)!(j − σ)!

×
(

sin
θ

2

)2j ∑
t

(−1)j−t+µ−σ

(
j − σ

t − µ

)(
j + σ

t + σ

)(
cot

θ

2

)2t+σ−µ

, (A.23)

which are not in agreement with the definitions of Newman and Penrose (1966), Campbell
(1971) (note that there is a mistake in the expression given by Campbell, in which cos θ

2 should
read cot θ

2 ) and (Hu and White 1997). Besides the presence of different phase factors, the
disagreement is certainly due to a different relation between the polar angle θ and the Euler
angle.

Now, considering (A.6), we get the expression of the spin spherical harmonics in terms
of the Jacobi polynomials, valid in the case in which µ ± σ > −1:

σ Yjµ(r̂) = (−1)µ eiσψ

√
2j + 1

4π

√
(j − µ)!(j + µ)!

(j − σ)!(j + σ)!

× 1

2µ
(1 + cos θ)

µ+σ

2 (1 − cos θ)
µ−σ

2 P
(µ−σ,µ+σ)

j−µ (cos θ) eiµφ. (A.24)

For other cases, it is necessary to use alternate expressions based on the relations (Magnus
et al 1966)

P (−l,β)
n (x) =

(
n+β

l

)(
n

l

) (
x − 1

2

)l

P
(l,β)

n−l (x), P
(α,β)

0 (x) = 1. (A.25)

Note that with σ = 0 we recover the expression of the normalized spherical harmonics

0Yjm(r̂) = Yjm(r̂) = (−1)m

√
2j + 1

4π

√
(j − m)!(j + m)!

1

j !2m
(sin θ)mP

(m,m)
j−m (cos θ) eimφ

=
√

2j + 1

4π

√
(j − m)!

(j + m)!
P m

j (cos θ) eimφ (A.26)
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since we have the following relation between associated Legendre polynomials and Jacobi
polynomials:

P
(m,m)
j−m (z) = (−1)m2m(1 − z2)−

m
2

j !

(j + m)!
P m

j (z), (A.27)

for m > 0. We also recall the symmetry formula

P −m
j (z) = (−1)m

(j − m)!

(j + m)!
P m

j (z). (A.28)

Our expression of spherical harmonics is rather standard, in agreement with (Arfken 1985,
Weisstein 2006).3

A.5. Transformation laws

We consider here the transformation law of the spin spherical harmonics under the rotation
group. From the relation

RRtRr̂ = Rr̂ (A.29)

for any R ∈ SO(3), and from the homomorphism ξ(RR′) = ξ(R)ξ(R′) between SO(3) and
SU(2), we deduce from definition (A.12) of the spin spherical harmonics the transformation
law

σ Yjµ(tR · r̂) =
√

2j + 1

4π
Dj

σµ(ξ †(RtR·r̂)) =
√

2j + 1

4π
Dj

σµ(ξ †(tRRr̂))

=
√

2j + 1

4π
Dj

σµ(ξ †(Rr̂)ξ(R)) =
√

2j + 1

4π

∑
ν

Dj
σν(ξ

†(Rr̂))D
j
νµ(ξ(R))

=
∑

ν

σ Yjν(r̂)Dj
νµ(ξ(R)), (A.30)

as expected if we think the special case (σ = 0) of the spherical harmonics.
Given a function f (x) on the sphere S2 belonging to the (2j +1)-dimensional Hilbert space

Hσj and a rotation R ∈ SO(3), we define the rotation operator Dσj (R) for that representation
by

(Dσj (R)f )(x) = f (R−1 · x) = f (tR · x). (A.31)

Thus, in particular,

(Dσj (R)σ Yjµ)(r̂) =σ Yjµ(tR · r̂). (A.32)

The generators of the three rotations R(a), a = 1, 2, 3, around the three usual axes, are
the angular momentum operator in the representation. When σ = 0, we recover the usual
SHs, and these generators are the usual angular momentum operators J i (short notation for
J

(j)

i ) for that representation. In the general case σ �= 0, we call them �
(σj)
a . We study their

properties below.

3 Sometimes (e.g., (Arfken 1985)), the Condon–Shortley phase (−1)m is prepended to the definition of the spherical
harmonics. Talman adopted this convention.
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A.6. Infinitesimal transformation laws

Recalling that the components Ja = −iεabcx
b∂c of the ordinary angular momentum operator

are given in spherical coordinates by

J3 = −i∂φ,

J+ = J1 + iJ2 = eiφ(∂θ + i cot θ∂φ),

J− = J1 − iJ2 = −e−iφ(∂θ − i cot θ∂φ).

(A.33)

We have introduced the ‘spin’ angular momentum operators:

�
σj

3 = J3 = −i∂φ, (A.34)

�
σj
+ = �

σj

1 + i�σj

2 = J+ + σ csc θ eiφ, (A.35)
�

σj
− = �

σj

1 − i�σj

2 = J− + σ csc θ e−iφ. (A.36)

They obey the expected commutation rules,[
�

σj

3 ,�
σj
±
] = ±�

σj
± ,

[
�

σj
+ ,�

σj
−
] = 2�

σj

3 . (A.37)

These operators are the infinitesimal generators of the action of SU(2) on the spin spherical
harmonics:

�
σj

3 σ Yjµ = µσYjµ (A.38)

�
σj
+ σ Yjµ =

√
(j − µ)(j + µ + 1)σ Yjµ+1 (A.39)

�
σj
− σ Yjµ =

√
(j + µ)(j − µ + 1)σ Yjµ−1. (A.40)

A.7. Integrals and 3j -symbols

Specifying equation (A.8) to the spin spherical harmonics leads to the following orthogonality
relations which are valid for j integer (and consequently σ integer):∫

S2
σ Yjµ(r̂)(σ Yj ′ν(r̂))∗µ(dr̂) = δjj ′δµν. (A.41)

We recall that in the integer case, the range of values assumed by the angle φ is 0 � φ < 2π .
Now, if we consider half-integer j (and consequently σ ), the range of values assumed by the
angle φ becomes 0 � φ < 4π . The integral above has to be carried out on the ‘doubled’
sphere S̃2, and an extra normalization factor equal to 1√

2
is needed in the expression of the

spin spherical harmonics.
For a given integer σ , the set {σ Yjµ,−∞ � µ � ∞, j � max (0, σ,m)} forms an

orthonormal basis of the Hilbert space L2(S2). Indeed, at µ fixed so that µ ± σ � 0, the set{√
2j + 1

4π

√
(j − µ)!(j + µ)!

(j − σ)!(j + σ)!

1

2µ
(1 + cos θ)

µ+σ

2 (1 − cos θ)
µ−σ

2 P
(µ−σ,µ+σ)

j−µ (cos θ), j � µ

}
is an orthonormal basis of the Hilbert space L2([−π, π ], sin θ dθ). The same holds for other
ranges of values of µ by using alternate expressions like (A.25) for Jacobi polynomials. Then
it suffices to view L2(S2) as the tensor product L2([−π, π ], sin θ dθ)

⊗
L2(S1). Similar

reasoning is valid for half-integer σ . Then, the Hilbert space to be considered is the space of
‘fermionic’ functions on the doubled sphere S̃2, i.e. such that f (θ, φ + 2π) = −f (θ, φ).
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Specifying equation (A.9) to the spin spherical harmonics leads to

σ Yjµ(r̂)σ ′Yj ′µ′(r̂) =
∑

j ′′µ′′σ ′′

√
(2j + 1)(2j ′ + 1)(2j ′′ + 1)

4π

×
(

j j ′ j ′′

µ µ′ µ′′

)(
j j ′ j ′′

σ σ ′ σ ′′

)
(σ ′′Yj ′′µ′′(r̂))∗. (A.42)

We easily deduce from (A.42) the following integral involving the product of three spherical
spin harmonics (in the integer case, but an analog formula exists in the half-integer case) and
with the constraint that σ + σ ′ + σ ′′ = 0:∫

S2
σ Yjµ(r̂)σ ′Yj ′µ′(r̂)σ ′′Yj ′′µ′′(r̂)µ(dr̂)

=
√

(2j + 1)(2j ′ + 1)(2j ′′ + 1)

4π

(
j j ′ j ′′

µ µ′ µ′′

)(
j j ′ j ′′

σ σ ′ σ ′′

)
. (A.43)

Note that this formula is independent of the presence of a constant phase factor of the type
eiσψ in the definition of the spin spherical harmonics because of the a priori constraint
σ +σ ′ +σ ′′ = 0. On the other hand, we have to be careful in applying equation (A.43) because
of this constraint, i.e. since it has been derived from equation (A.42) on the ground that σ ′′

was already fixed at the value σ ′′ = −σ − σ ′. Therefore, the computation of∫
S2

σ Yjµ(r̂)σ ′Yj ′µ′(r̂)σ ′′Yj ′′µ′′(r̂)µ(dr̂)

for an arbitrary triplet (σ, σ ′, σ ′′) should be carried out independently.

A.8. Important particular case: j = 1

In the particular case j = 1, we get the following expressions for the spin spherical harmonics:

σ Y10(r̂) = eiσψ

√
3

4π

1√
(1 + σ)!(1 − σ)!

(
cot

θ

2

)σ

cos θ, (A.44)

σ Y11(r̂) = −eiσψ

√
3

4π

1√
2(1 + σ)!(1 − σ)!

(
cot

θ

2

)σ

sin θ eiφ, (A.45)

σ Y1−1(r̂) = (−1)σ e−iσψ

√
3

4π

1√
2(1 + σ)!(1 − σ)!

(
tan

θ

2

)σ

sin θ e−iφ. (A.46)

For σ = 0, we recover a familiar formula connecting spherical harmonics to components of
vector on the unit sphere:

Y10(r̂) =
√

3

4π
cos θ =

√
3

4π
z, (A.47)

Y11(r̂) = −
√

3

4π

1√
2

sin θ eiφ = −
√

3

4π

x + iy√
2

, (A.48)

Y1−1(r̂) =
√

3

4π

1√
2

sin θ e−iφ =
√

3

4π

x − iy√
2

. (A.49)

A.9. Another important case: σ = j

For σ = j , due to relations (A.25), the spin spherical harmonics reduce to their simplest
expressions:
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jYjµ(r̂) = (−1)j eijψ

√
2j + 1

4π

√(
2j

j + µ

)(
cos

θ

2

)j+µ (
sin

θ

2

)j−µ

eiµφ. (A.50)

They are precisely the states which appear in the construction of the Gilmore–Radcliffe
coherent states. Otherwise said, the latter and related quantization are just particular cases of
our approach.

A.10. Spin coherent states

For a given pair (j, σ ), we define the family of coherent states in the (2j + 1)-dimensional
Hilbert space Hσj :

|x〉 = |θ, φ〉 = 1√
N (x)

j∑
µ=−j

σ Y ∗
jµ(x)|σjµ〉, |x〉 ∈ Hσj , (A.51)

with

N (x) =
j∑

µ=−j

|σ Yjµ(x)|2 = 2j + 1

4π
.

For σ = j , these coherent states identify the so-called spin or atomic or Bloch coherent states
(Perelomov 1986). But for a given j and two different σ �= σ ′, the corresponding families are
distinct because they live in different Hilbert spaces of the same dimension 2j + 1. This is due
to the fact that the map between the two orthonormal sets is not unitary, since we should deal
with expansions like

σ Yjµ =
∑
j ′µ′

Mj ′µ′,jµ(σ ′, σ )σ ′Yj ′µ′ , (A.52)

where

Mj ′µ′,jµ(σ ′, σ ) =
∫

S2
(σ ′Yj ′µ′(r̂))∗σ Yjµ(r̂)µ(dr̂) = [j ′jσ ′σµ]δµµ′ . (A.53)

The (non-trivial!) coefficient [j ′jσσ ′µ] forces the sum to run on values of j ′ different to j .

A.11. Covariance properties of spin CS

The definition of the rotation operator Dσj (R) was given in (A.31). Starting from a CS |x〉,
let us consider the coherent state with the rotated parameter R× x. Due to the transformation
property (A.30), the invariance of N (x) and the unitarity of Dj , we find

|R · x〉 = 1√
N (x)

j∑
µ=−j

σ Y ∗
jµ(tR · x)|σjµ〉

= 1√
N (x)

j∑
µ,µ′=−j

σ Y ∗
jµ′(x)(D

j

µ′µ(ξ(R−1)))�|σjµ〉

= 1√
N (x)

j∑
µ′=−j

σ Y ∗
jµ′(x)

j∑
µ=−j

D
j

µµ′(ξ(R))|σjµ〉

= Dσj (R)|x〉, (A.54)

where Dσj have been defined in (A.31).
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Hence, we get the (standard) covariance property of the spin CS:

Dσj (R)|R−1 · x〉 = |x〉. (A.55)

Note that this proves the equality between our coherent states and the SU(2) Perelomov ones
(Perelomov 1986).

A.12. Spin CS quantization

A classical observable on X is a function f : X �→ C. To any such function f , we associate
the operator Af in Hσj through the map:

f �→ Af ≡
∫

X

f (x)|x〉〈 x|N (x)µ(dx). (A.56)

Occasionally, we might use the notation f̃ for Af .
In terms of its matrix elements in the basis of spin harmonics, this operator reads

Af =
j∑

µ,µ′=−j

∫
X

f (x)σ Y ∗
jµ(x)σYjµ′(x)|σjµ〉〈 σjµ′|µ(dx)

≡
j∑

µ,µ′=−j

[Af ]µµ′ |σjµ〉〈 σjµ′|. (A.57)

A.13. Spin CS quantization of spin spherical harmonics

The quantization of an arbitrary spin harmonics νYkn yields an operator in Hσj whose
(2j + 1) × (2j + 1) matrix elements are given by the following integral resulting from (A.57):

[ν Ỹkn]µµ′ =
∫

X
σY ∗

jµ(x)σYjµ′(x)νYkn(x)µ(dx)

=
∫

X

(−1)σ−µ−σ Yj−µ(x)σ Yjµ′(x)νYkn(x)µ(dx). (A.58)

As asserted above, it is only when ν −σ +σ = 0, i.e. when ν = 0, that the integral (A.58)
is given in terms of a product of two 3j -symbols as follows:

[Ỹkn]µµ′ =
∫

X
σY ∗

jµ(x)σ Yjµ′(x)Ykn(x)µ(dx)

=
∫

X

(−1)σ−µ−σ Yj−µ(x)σ Yjµ′(x)Ykn(x)µ(dx)

= (−1)σ−µ(2j + 1)

√
(2k + 1)

4π

(
j j k

−µ µ′ n

)(
j j k

−σ σ 0

)
. (A.59)

A.14. Checking quantization in the simplest case: j = 1

With the notations of the text, we find for the matrix elements of the CS quantized versions of
the above spherical harmonics,

[Ỹ10]mn = σ

√
3

4π

1

j (j + 1)
mδmn, (A.60)

[Ỹ11]mn = −σ

√
3

4π

1

j (j + 1)

√
(j − n)(j + n + 1)

2
δmn+1, (A.61)
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[Ỹ1−1]mn = σ

√
3

4π

1

j (j + 1)

√
(j + n)(j − n + 1)

2
δmn−1. (A.62)

Comparing with the actions (A.38)–(A.40) of the spin angular momentum on the spin-σ
spherical harmonics, we have the identification

Ỹ10 = σ

√
3

4π

1

j (j + 1)
�3, (A.63)

Ỹ11 = −σ

√
3

8π

1

j (j + 1)
�+, (A.64)

Ỹ1−1 = σ

√
3

8π

1

j (j + 1)
�−. (A.65)

Hence, we can conclude on the following identification between quantized versions of the
components of the vector on the unit sphere and the components of the spin angular momentum
operator:

x̃ = σ

j (j + 1)
�1, (A.66)

ỹ = σ

j (j + 1)
�2, (A.67)

z̃ = σ

j (j + 1)
�3. (A.68)

A.15. Rotational covariance properties of operators

By construction, the operators ν̃Ykn acting on Hσj are tensorial irreducible. Indeed, under the
action of the representation operator Dσj (R) in Hσj , due to (A.55), the rotational invariance
of the measure and N (x), and (A.30), they transform as

Dσj (R)ν̃YknDj (R−1) =
∫

X
νYkn(x)|R · x〉〈R · x|N (x)µ(dx)

=
∫

X
νYkn(R−1 · x)|x〉〈 x|N (x)µ(dx)

=
∑
n′

Dk
n′n(ξ(R))

∫
X

νYkn′(x)|x〉〈 x|N (x)µ(dx)

=
∑
n′

ν̃Ykn′Dk
n′n(ξ(R)). (A.69)

Therefore, the Wigner–Eckart theorem (Edmonds 1968) tells us that the matrix elements
of the operator ν̃Ykn with respect to the SSH basis {σ Ỹjm} are given by

[ν Ỹkn]mm′ = (−1)j−m

(
j j k

−m m′ n

)
K(ν, σ, j, k). (A.70)

Note that the presence of the 3j -symbol in (A.70) implies the selection rules n + m′ = m and
the triangular rule 0 � k � 2j . The proportionality coefficient K can be computed directly
from (A.58) by choosing therein suitable values of m,m′.

On the other hand, we have by definition (A.30), (A.32)∑
n′

νYkn′Dk
n′n(ξ(R)) = Dνk(R)νYkn.
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Thus, from the formula above,

Dσj (R)ν̃YknDj (R−1) = ˜Dνk(R)νYkn.

In the special case ν = 0,

Dσj (R)ỸknDj (R−1) = ˜D0k(R)Ykn. (A.71)

Its infinitesimal version for each one of the three rotations Ri reads as[
�

(σj)

i , Ỹkn

] = ˜
J

(k)
i Ykn. (A.72)

Appendix B. Symmetrization of the commutator

We want to prove that

S
([

J3, J
α1
1 J

α2
2 J

α3
3

]) = [
J3, S

(
J

α1
1 J

α2
2 J

α3
3

)]
,

where Ji is a representation of so(3).
Let us make a first comment on the symmetrization

S
(
J

α1
1 J

α2
2 J

α3
3

) = 1

l!

∑
σ∈Sl

Jiσ(1)
. . . Jiσ(l)

,

where l = α1 + α2 + α3. The terms of the sum are not all distinct, since the exchange of,
say, two J1 gives the same term: each term appears in fact α1!α2!α3! times, so that there are
l!/(α1!α2!α3!) distinct terms. This is the number of sequences of length l, with values in
{1, 2, 3}, where there are αi occurrences of the value i (for i = 1, 2, 3). One denotes this set
as Uα1,α2,α3 . After grouping of identical terms, one obtains

S
(
J

α1
1 J

α2
2 J

α3
3

) = α1!α2!α3!

l!

∑
u∈Uα1 ,α2 ,α3

Ju1 . . . Jul
,

where all the terms of the summation are now different.
Let us now calculate S

([
J3, J

α1
1 J

α2
2 J

α3
3

])
. First, we write[

J3, J
α1
1 J

α2
2 J

α3
3

] = [
J3, J

α1
1

]
J

α2
2 J

α3
3︸ ︷︷ ︸

A

+ J
α1
1

[
J3, J

α2
2

]
J

α3
3︸ ︷︷ ︸

B

,

with

A =
α1∑

k=1

J1 . . . J1︸ ︷︷ ︸
k−1 terms

J2 J1 . . . J1︸ ︷︷ ︸
α1−k terms

J
α2
2 J

α3
3 .

The different terms in A give the same symmetrized. Thus,

S(A) = α1S
(
J

α1−1
1 J

α2+1
2 J

α3
3

)
(B.1)

= α1
(α1 − 1)!(α2 + 1)!α3!

l!

∑
u∈Uα1−1,α2+1,α3

Ju1 . . . Jul
. (B.2)

Similarly, for B,

S(B) = −α2
(α1 + 1)!(α2 − 1)!α3!

l!

∑
u∈Uα1+1,α2−1,α3

Ju1 . . . Jul
.
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Now we calculate

I = [
J3, S

(
J

α1
1 J

α2
2 J

α3
3

)]
= α1!α2!α3!

l!

∑
u∈Uα1 ,α2 ,α3

l∑
k=1

Ju1 . . . Juk−1

[
J3, Juk

]
Juk+1 . . . Jul

.

The sum splits in two parts, according to the value of uk = 1 or 2

I = A′ + B ′,

with

A′ = α1!α2!α3!

l!

∑
u∈Uα1 ,α2 ,α3

∑
k|uk=1

Ju1 . . . Juk−1J2Juk+1 . . . Jul

and

B ′ = −α1!α2!α3!

l!

∑
u∈Uα1 ,α2 ,α3

∑
k|uk=2

Ju1 . . . Juk−1J1Juk+1 . . . Jul
.

Let us examine the constituents of A′. They are of the form Ju1 . . . Jul
with u ∈

Uα1−1,α2+1,α3 . Their number is l!/(α1!α2!α3!) × α1, but they are not all different. Each
monomial is issued from a term where J1 has been transformed into J2. Since there are α2 + 1
occurrences of J2 in each term, each monomial appears α2 + 1 times. We now group these
identical terms

A′ = α1!α2!α3!

l!
(α2 + 1)

∑
?

Ju1 . . . Jul
.

It remains to determine the definition set of the summation. Let us first estimate the number
of its terms, namely

N = l!

α1!α2!α3!

α1

α2 + 1
= l!

(α1 − 1)!(α2 + 1)!α3!
.

This is the number of elements in Uα1−1,α2+1,α3 . On the other hand, all the elements of
Uα1−1,α2+1,α3 appear. In the contrary case, the retransformation of J2 into J1 would provide
some elements not appearing in I, which cannot be. There results that the sum comprises
exactly all symmetrized of J

α1−1
1 J

α2+1
2 J

α3
3 . Thus,

A′ = α1!α2!α3!

l!
(α2 + 1)

∑
u∈Uα1−1,α2+1,α3

Ju1 . . . Jul

= α1
(α1 − 1)!(α2 + 1)!α3!

l!

∑
u∈Uα1−1,α2+1,α3

Ju1 . . . Jul

= S(A).

The application of the same treatment to B ′ leads to the proof.
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Gazeau J-P, Garidi T, Huguet E, Lachièze-Rey M and Renaud J 2004 Examples of Berezin–Toeplitz Quantization:

Finite Sets and Unit Interval Proc. CRM and Lecture Notes 34 67–76
Gazeau J-P and Piechocki W 2004 Coherent states quantization of a particle in de Sitter space J. Phys. A: Math. Gen.

37 6977–86
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